Wornied with Jee

LOW PRECENTILE??

COLLEGETPOINT HELPS TO GET THE INDIA's BEST COLLEGES AT YOUR PERCENTILE

Advance algorithm College Predictor
College Shortlist \& College Compare
Counselling \& Engineering Entrance Update
College Cutoff Placement Fee \& Seats Info
\checkmark Top Filters for Speeding up your Search Mstall Now

Categories

UP govt to open free coaching centres for competitive exams from Feb 16

Manipal Entrance Test (MET) 2021 Syllabus

MET 2021 Test Details

- Mode: Online Remote Proctored Test (RPT)
- Test Duration: $\mathbf{1 2 0}$ minutes
- Total Questions: 60
- Multiple Choice Questions (MCQs): Mathematics (15), Physics (10), Chemistry (10), and English (10)
- Numerical Answer Type (NAT): Mathematics (5), Physics (5), and Chemistry (5)
- Max Marks: $\mathbf{2 4 0}$
- Marking Scheme
- MCQ: +4 for every correct answer, $\mathbf{- 1}$ for every wrong answer, $\mathbf{0}$ for every unanswered question
- NAT: +4 for every correct answer, $\mathbf{0}$ for every wrong, $\mathbf{0}$ for every unanswered question
- MET 2021 Schedule: June 11-14, 2021
- There will be ONE attempt only

MATHEMATICS

Sets and Functions

Sets: Sets and their representations, The empty set, Finite and infinite sets, Equal sets, Subsets, Power set, Universal set, Venn Diagrams, Operation on Sets, Complement of a set, Union and intersection of two sets, Relations and Functions: Cartesian product of sets, relations and functions, Trigonometric Functions: Angles, Trigonometric functions, Trigonometric functions of sum and difference of two angles and trigonometric equations.

Abstract

Algebra Mathematical Induction: Motivation, Principle of mathematical induction, Numbers and Quadratic Equations: Complex numbers, Algebra of complex numbers, The modulus and the conjugate of a complex number, Argand plane and polar representation and Quadratic equations, Linear Inequalities: Inequalities, Algebraic solutions of linear inequalities, graphical solution and solution of system of linear inequalities in two variables, Permutations and Combinations: Permutations and Combinations, Derivation of formulae and their connections, Binomial Theorem: Binomial theorem for positive integral indices, General and middle terms, Applications, Sequence and Series: Sequences, Series, Arithmetic progression, Geometric progression, Relationship between AM and GM, sum to n terms of special series, Matrices: Matrix, types, operations, Transpose, Symmetric and skew symmetric matrices, elementary operation, Invertible matrices, Determinants: Properties, Area of a triangle, minors and cofactors, Adjoint and inverse of a matrix, applications

Coordinate Geometry

Straight Lines: Slope of a line, Various forms of the equation of a line, General equation of a line, Distance of a point from a line, Conic Sections: Section of a cone, Circle, Parabola, Ellipse, Hyperbola, Introduction to Three-dimensional Geometry: Coordinate axes and coordinate planes in three-dimensional space, Coordinates of a point in space, Distance between two points, Section formula

Calculus

Limits and Derivatives: Intuitive idea of derivatives, Limits of trigonometric functions, Derivatives, Continuity and Differentiability: Exponential and logarithmic functions, logarithmic differentiation, Derivatives of functions in parametric forms, Second order derivative, Mean value theorem, Applications of Derivatives: Rate of change of quantities, Increasing and decreasing functions, Tangents and normals, Approximations, Maxima and Minima, Integrals and their Application: Integration, methods of integration, Integrals of some particular functions, Integration by partial fractions, Integration by parts, Definite Integral, Fundamental theorem of calculus, Evaluation of definite integrals by substitution, Properties of definite integrals, Area under simple curves and two curves, Differential equations: Basic concepts, General and particular solutions of a differential equation, formation of a differential equation, methods of solving first order, first degree differential equations

Mathematical Reasoning: Statements, New statements from old, Special words/phrases, Implications, Validating statements, Statistics and Probability: Measure of dispersion, Range, Mean deviation, Variance and standard deviation, Analysis of frequency distributions, Random experiments, Event, Axiomatic approach to probability, Conditional probability, multiplication theorem on probability,

Manipal Entrance Test (MET) 2021 Syllabus

Independent events, Bayes' theorem, Random variables and its probability distributions, Bernoulli trials and binomial distribution, Relations and Functions: Types of relations and functions, Composition of functions and invertible function, Binary operations, Inverse Trigonometric Functions: Basic concepts, Properties of inverse trigonometric functions, Vector algebra: Basic concepts, types of vectors, Addition of vectors, Multiplication of a vector by a scalar, Product of two vectors, Three-Dimensional Geometry: Direction cosines and direction ratios of a line, Equation of a line in space, Angle between two lines, Shortest distance between two lines, Plane, Coplanarity of two lines, Angle between two planes, Distance of a point from a plane, Angle between a line and a plane, Linear programming: Problem and its mathematical formulation, different types of linear programming problems

Mathematics

66. The solution of the equation. $\log \left(\log _{5}(\sqrt{x+5}+\sqrt{x})\right)=0$ is
(a) 2
(b) 4
(c) 3
(d) 8
67. Let $\frac{1}{q+r}, \frac{1}{r+p}$ and $\frac{1}{p+q}$ are in A.P. where $p, q, r, \neq 0$, then
(a) p, q, r are in A.P.
(b) p^{2}, q^{2}, r^{2} are in A.P.
(c) $\frac{1}{p} \cdot \frac{1}{q} \cdot \frac{1}{r}$ in A.P.
(d) none of these
68. If $b \in \mathrm{R}^{+}$then the roots of the equation $(2+b) x^{2}+(3+b) x+(4+b)=0$ is
(a) real and distinct
(b) real and equal
(c) imaginar
(d) cannot predicted
69. Solve for integral solutions $x_{1}+x_{2}+x_{3}+\ldots+x_{6} \leq 17$, where $1 \leq x_{i} \leq 6, i=1,2, \ldots 6$.

Number of solutions will be
(a) ${ }^{17} \mathrm{C}_{6}-6{ }^{11} \mathrm{C}_{5}$
(b) ${ }^{17} \mathrm{C}_{11}-6{ }^{11} \mathrm{C}_{5}$
(c) ${ }^{17} \mathrm{C}_{5}-6{ }^{11} \mathrm{C}_{5}$
(d) ${ }^{17} \mathrm{C}_{11}-5{ }^{11} \mathrm{C}_{6}$
70. The probability that a certain beginner at golf gets a good shot if he uses the correct club is $\overrightarrow{3}$ and the probability of a good shot with an incorrect club is $\underset{4}{1}$ In his bag there are 5 different clubs, only one of which is correct for the shot in question. If he chooses a club at random and take a stroke, the probability that he gets a good shot is
(a) $\frac{1}{3}$
(b) 12
(c) 15
(d)
71. $O P Q R$ is a square and M, N are the middle points of the side $P Q$ and $Q R$ respectively. Then the ratio of the area of the square and the triangle OMN is
(a) $4: 1$
(b) $2: 1$
(c) $4: 3$
(d) $8: 3$
72. Two vertices of an equilateral triangle are $(-1,0)$ and $(1,0)$ and its circumcircle is
(a) $x^{2}+\left(y-\frac{1}{\sqrt{3}}\right)^{2}=\frac{4}{3}$
(b) $x^{2}-\left(y+\frac{1}{\sqrt{3}}\right)^{2}=\frac{4}{3}$
(c) $x^{2}+\left(y-\frac{1}{\sqrt{3}}\right)^{2}=-\frac{4}{3}$
(d) none of these
73. If in a $\Delta \mathrm{ABC}, \sin ^{2} \mathrm{~A}+\sin ^{2} \mathrm{~B}+\sin ^{2} \mathrm{C}=2$, then the triangle is always
(a) isosceles triangle
(b) right angled
(c) acute angled
(d) obtuse angled
74. If the vertex and the focus of a parabola are $(-1,1)$ and $(2,3)$ respectively, then the equation of the directrix is
(a) $3 x+2 y-25=0$
(b) $x+2 y+7=0$
(c) $2 x-3 y+10=0$
(d) $3 x+2 y+14=0$.
75. The radius of the circle passing through the foci of the ellipse $\frac{x^{2}}{16}+\frac{y^{2}}{9}=1$ and having its centre at $(0,3)$ is
(a) 4
(b) 3
(c) $\sqrt{12}$
(d) $7 / 2$
76. If $\mathrm{P}\left(x_{1}, y_{1}\right), \mathrm{Q}\left(x_{2}, y_{2}\right), \mathrm{R}\left(x_{3}, y_{3}\right)$ and $\mathrm{S}\left(x_{4}, y_{4}\right)$ are four concyclic points on the rectangular hyperbola $x y=c^{2}$, then the co-ordinates of the orthocentre of $\triangle \mathrm{PQR}$ are
(a) $\left(x_{4},-y_{4}\right)$
(b) $\left(x_{4}, y_{4}\right)$
(c) $\left(-x_{4},-y_{4}\right)$
(d) $\left(-x_{4}, y_{4}\right)$
77. The coefficient of $x^{n} y^{n}$ in the expansion of $[(1+x)(1+y)(x+y)]^{n}$ is
(a) $\sum_{r=0}^{n} C_{r}$
(b) $\sum_{r=0}^{n} C_{r}^{2}$
(c) $\sum_{r=0}^{n} C_{r}{ }^{3}$
(d) none of these
78. z_{0} is one of the roots of the equation $z^{n} \cos \theta_{0}+z^{n-1} \cos \theta_{1}+\ldots+\cos \theta_{n}=2$, where $\theta_{i} \in \mathrm{R}$, then
(a) $\left|{ }_{0}\right|^{<} \frac{1}{2}$
(b) $\left|z_{0}\right|^{>} \frac{1}{2}$
(c) $\left|z_{0}\right|=\frac{1}{2}$
(d) none of these
79. The second order differential equation is
(a) $y^{\prime 2}+x+y^{2}$
(b) $y^{\prime} y^{\prime \prime}+y=\sin x$
(c) $y^{\prime \prime \prime}+y^{\prime \prime}+y=0$
(d) $y^{\prime}=0$
80. $\int e^{3 x}\left(\frac{1+3 \sin x}{1+}\right) d x$ is equal to
(a) $e^{3 x} \cot x+c$
(b) $\mathrm{e}^{3 \mathrm{x}} \tan \frac{x}{2}+c$
(c) $e^{3 x} \sin x+c$
(d) $e^{3 x} \cos x+c$
81. If m and n are positive integers and $f(x)=\int_{1}^{x}(t-a)^{2 n}(t-b)^{2 n+1} d t, a \neq b$, then
(a) $x=b$ is a point of local minimum
(b) $x=b$ is a point of local maximum
(c) $x=a$ is a point of local minimum
(d) $x=a$ is a point of local maximum
82. If in a triangle $\mathrm{ABC} \frac{2 \cos A}{a}+\frac{\cos B}{b}+\frac{2 \cos C}{c}=\frac{a}{b c}+\frac{b}{c a}$, then the value of the angle A is
(a) 45°
(b) 90°
(c) 135°
(d) 60°
83. The general solution of the equation $2^{\cos 2 x}+1=3.2^{-\sin ^{2} x}$ is
(a) $n \pi$
(b) $\left(\begin{array}{r}\left.n+\begin{array}{l}1 \\ 2\end{array}\right) \pi, ~\end{array}\right.$
(c) $\left(\begin{array}{r}\left.n-\begin{array}{r}1 \\ 2\end{array}\right)^{2} \pi\end{array}\right.$
(d) all of the above.
84. Total number of positive real values of x satisfying $2[x]=x+\{x\}$, where [.] and $\{$.$\} denote the$ greatest integer function and fractional part respectively is equal to
(a) 2
(b) 1
(c) 0
(d) 3
85. If $\lim _{x \rightarrow 0} \frac{((a-n) n x-\tan x) \sin n x}{x^{2}}=0$, where n is nonzero real number, then a is equal to
(a) 0
(b) $\frac{n+1}{n}$
(c) n
(d) $n+\frac{1}{n}$
86. $f(x)=\left\{\begin{array}{l}4 x-x^{3}+\ln \left(a^{2}-3 a+3\right), \\ x-18,\end{array} \quad 0 \leq x<3\right.$. . Find the complete set of values of a such that $f(x)$ has a local minima at $x=3$ is
(a) $[-1,2]$
(b) $(-\infty, 1) \cup(2, \infty)$
(c) $[1,2]$
(d) $(-\infty,-1) \cup(2, \infty)$
87. The number of values of k for the system of equations $(k+1) x+8 y=4 k$ and $k x+(k+3) y=3 k-1$ has infinitely many solutions
(a) 0
(b) 1
(c) 2
(d) infinite
88. The matrix $\left[\left.\begin{array}{ll}\frac{1+i}{12 i} & \frac{-1+i}{12} i\end{array} \right\rvert\,\right.$ is
(a) unitary
(b) null matrix
(c) symmetric
(d) none of these
89. The area between the curves $y=x e^{x}$ and $y=x e^{-x}$ and the line $x=1$ is
(a) $2 e$
(b) e
(c) $2 / e$
(d) $1 / e$
90. If the unit vectors \vec{a} and \vec{b} are inclined at an angle 2θ and $|\vec{a}-\vec{b}|<1$ then θ lies in the interval
(a) $\left[0, \frac{\pi}{6}\right)$
(b) $\left[\frac{5 \pi}{6}, 2 \pi{ }^{\top}\right.$
(c) $\left\lceil\frac{\pi}{\left\lfloor\frac{\pi}{6}\right.}, \frac{\pi}{2}\right\rfloor$
(d) $\left.\left\lceil\frac{\pi}{\lfloor 2}, \frac{5 \pi}{6}\right\rceil\right\rfloor$

COLLEGETPOINT

AN APPLICANTION WHICH SIMPLIFIES ADMISSION PROCESS

Just 3 Steps Ahead of Your Dream College

Use Predictor to find Colleges at your rank

Shortlist the colleges of your choice

Compare \& Select the best one based on placement stats and other parameters.

Stay Home. Stay Safe. \#engineeringapp

Worried with Jee

LOW PRECENTILE??

COLLEGETPOINT HELPS TO GET THE INDIA'S BEST COLLEGES AT YOUR PERCENTILE

\checkmark Advance algorithm College Predictor
\checkmark College Shortlist \& College Compare
\checkmark Counselling \& Engineering Entrance Update
\checkmark College Cutoff Placement Fee \& Seats Info
\checkmark Top Filters for Speeding up your Search

INSTALL NOW

Thank you for Downloading

COLLEGETPOINT

AN APPLICANTION WHICH SIMPLIFIES ADMISSION PROCESS

Just 3 Steps Ahead of Your

 Dream CollegeUse Predictor to find Colleges at your rank

Shortlist the colleges of your choice

Compare \& Select the best one based on placement stats and other parameters.

Stay Home. Stay Safe. \#engineeringapp

